
REFERENCES,

POINTERS AND STRUCTS

Problem Solving with Computers-I

https://ucsb-cs16-sp17.github.io/

Pointer assignment

Q: Which of the following pointer diagrams best represents the

outcome of the above code?

2

int *p1, *p2, x;
p1 = &x;
p2 = p1;

A.

x

B.

x

C. Neither, the code is incorrect

void swapValue(int x, int y){

int tmp = x;

x = y;

y = tmp;

}

int main() {

int a=30, b=40;

swapValue(a, b);

cout<<a<<" "<<b<<endl;

}

Modify the function to swap the values of a and b: use pointers

Draw the pointer diagram for your code

Segmentation faults (aka segfault)

• Segfault- your program has crashed!

• What caused the crash?

• Read or write to a memory location that either doesn’t exist or you
don’t have permission to access

• Dereferencing a null pointer

• Avoid segfaults in your code by

• Always initializing a pointer to null upon declaration

• Performing a null check before dereferencing it

• Avoid redundant null checks by specifying pre and post conditions for
functions that use pointers

4

Q: Which of the following is true about the above code?

5

int *p;

*p = 5;

A Compile time error

B Runtime error

C Code runs without error

References in C++

int main() {

int d = 5;

int &e = d;

}

A reference in C++ is an alias for

another variable

5dA.

D. This code causes an error

5e

6

5d

e

B.

5
d

e
C.

References in C++
int main() {

int d = 5;

int & e = d;

int f = 10;

e = f;

}

How does the diagram change with this code?

C. 10

10
d:
e:

10f:

A. B.
5

10

D. Other or error

7

d:
e:

f:

d:

e:

f:

int a = 5;

int & b = a;

int* pt1 = &a;

What are three ways

to change the value

of ‘a’ to 42?

8

Pointers and references: Draw the diagram for this code

Call by reference: Modify to correctly swap a and b
void swapValue(int x, int y){

int tmp = x;

x = y;

y = tmp;

}

int main() {

int a=30, b=40;

swapValue(a, b);

cout<<a<<" "<<b<<endl;

}

C++ structures

• A struct is a data structure composed of simpler data types.

struct Point {
double x;
double y;

};

Pointers to structures
The C arrow operator (->) dereferences and extracts a structure field with a

single operator.

struct Point {
double x;
double y;

};

Demo program using

points

References to structures

int main(){
Point p;
setPoint(p, 100.0, 200);
cout <<p.x <<“ “ <<p.y<<endl

}

void setPoint(Point &q double x, double y)
{

//Code to set the x and y values of q

}

Draw a diagram to
show the state of
memory when the
function setPoint is
called

Two important facts about Pointers

13

1) A pointer can only point to one type –(basic or derived) such as int,

char, a struct, another pointer, etc

2) After declaring a pointer: int *ptr;

ptr doesn’t actually point to anything yet. We can either:

make it point to something that already exists, or

 allocate room in memory for something new that it will point to

Null check before dereferencing

Complex declarations in C/C++

How do we decipher declarations of this sort?

int **arr[];

Read

* as “pointer to” (always on the left of identifier)

[] as “array of” (always to the right of identifier)

() as “function returning” (always to the right …)

14

For more info see:

http://ieng9.ucsd.edu/~cs30x/rt_lt.rule.html

Complex declarations in C/C++

Right-Left Rule

int **arr [];

Step 1: Find the identifier

Step 2: Look at the symbols to the right of the identifier. Continue right until you

run out of symbols *OR* hit a *right* parenthesis ")"

Step 3: Look at the symbol to the left of the identifier. If it is not one of the

symbols ‘*’, ‘(), ‘[]’ just say it. Otherwise, translate it into English using the table

in the previous slide. Keep going left until you run out of symbols *OR* hit a

left parenthesis "(".

Repeat steps 2 and 3 until you've formed your declaration.

15

Illegal combinations include:

[]() - cannot have an array of functions

()() - cannot have a function that returns a

function
()[] - cannot have a function that returns an array

Complex declarations in C/C++

16

int i;
int *i;
int a[10];
int f();
int **p;
int (*p)[];
int (*fp) ();
int *p[];
int af[]();
int *f();
int fa()[];
int ff()();
int (**ppa)[];
int (*apa[])[] ;

Pointer assignment: Trace the code

17

int x=10, y=20;

int *p1 = &x, *p2 =&y;

p2 = p1;

int **p3;

p3 = &p2;

Next time

• Arrays and pointers

• Arrays of structs

• Dynamic memory allocation

