
RECURSION

Problem Solving with Computers-I

https://ucsb-cs16-sp17.github.io/

Thinking recursively!

• Many structures in nature and CS that are recursive

• A recursive solution to a problem is all about describing the

problem in terms of a smaller version of itself!

Thinking recursively!

1. Base case: solve the smallest version(s) of the problem

2. Recursive case: describe the problem in terms of itself!

• Assume you have a solution for a smaller input size!

• Describe the problem in terms of a smaller version of itself.

Example problem: Print all the elements of a linked-list backwards!

head

What is the smallest version of this problem?

Step 1: Base case!

//Write code for the smallest version of the problem

void printBackwards(Node * head){

}

Step 2: Write the recursive case !

• Assume you have a solution for a smaller version of the problem!!!!

• Describe the problem in terms of a smaller version of itself

void printBackwards(Node * head){

if (head == NULL) //Base case

return;

head

Example 2: Find the sum of the elements of a linked-list

head

Step 1: Base case!

• Write code for the smallest version of the problem

int sum(Node * head){

}

Step 2: Write the recursive case !

• Assume you have a solution for a smaller version of the problem!!!!

• Describe the problem in terms of a smaller version of itself

void sum(Node * head){

if (head == NULL) //Base case

head

name ‘B’ ‘o’ ‘n’ ‘d’ ‘0’ ‘0’ ‘7’

void printElementsBackwards(char *arr, int len){

if(len<=0){ //Base case

return;

}

//Write your code here

}

Example 3: Backwards with arrays

C-Strings

Q1: How are ordinary arrays of characters and C-strings similar and

how are they dissimilar?

Which of the following is not a C string?

A. char mystr[5] = “John”;

B. char mystr[] = “Mary”;

C. const char *mystr = “Jill”;

D. char mystr[4]= {‘J’, ‘i’, ‘l’, ‘l’};

Q2: Which of the following statements about the given

code is FALSE?

A. There is an out of bound access in the for loop

B. The entire for loop can be replaced by s1 = s2;

C. In the if statement, the logic for comparing two strings is incorrect.

D. The body of the if statement is incorrect: cannot change the base

address of an array

char s1[5] = "Mark", s2[5] = "Jill";

for (int i = 0; i <= 5; i++)

s1[i] = s2[i];

if (s1 != s2) s1 = "Art";

C String Standard Functions #include <cstring>

 int strlen(char *string);

 Returns the length not counting of string the null terminator

 int strcmp(char *str1, char *str2);

 return 0 if str1 and str2 are identical (how is this different from str1 == str2?)

 int strcpy(char *dst, char *src);

 copy the contents of string src to the memory at dst. The caller must ensure that dst

has enough memory to hold the data to be copied.

 char* strcat(char *s1, char *s2);

 concatenate the contents of string s2 to s2and returns pointer to resulting string

char s1[5] = "Mark", s2[5] = "Jill";

for (int i = 0; i <= 5; i++)

s1[i] = s2[i];

if (s1 != s2) s1 = "Art";

Q3: What is the output of the following code? (solo vote)

A. Hi!

B. Hey!

C. Compiler error

D. Runtime error

char s1[4] = "abc", s2[4] = “EFG";

if (strcmp(s1, s2)) cout << "Hi!";

else cout << "Hey!";

C strings vs. String class: What is the output of the code?

A. Mark Jill

B. Mark Mark

C. Art Mark

D. Compiler error

E. Run-time error

string s1 = "Mark";

string s2 = "Jill";

for (int i = 0; i <= s1.length(); i++)

s2[i] = s1[i];

if (s1 == s2) s1 = "Art";

cout<<s1<<“ ”<<s2<<endl;

The C++ string class methods

string fruit = ”Apple";

int len = fruit.length();

int pos= fruit.find(‘l’);

string part= fruit.substr(1,3);

fruit.erase(2,3);
fruit.insert(2,“ricot”);

fruit.replace(2,5,“ple”);

Check out ctype for checks and conversions on
characters

fruit[0]= tolower(fruit[0]);

isalpha(fruit[0])

Lab 08: anagrams and palindromes

Diba == Adib

Rats and Mice == In cat's dream

Waitress == A stew, Sir?

bool isAnagram(string s1, string s2)

bool isPalindrome(const string s1) //recursive

deTartraTED

WasItACarOrACatISaw

bool isPalindrome(const char *s1) //recursive

Why don’t we pass the length of the string?

bool isPalindromeIterative(const char *s1) //iterative

Next time

• Dynamic memory pitfalls

• Advanced problems in recursion involving strings

