RECURSION

Problem Solving with Computers-I

https://ucsb-csl6-spl7.github.io/

L
Thinking recursively!

« Many structures in nature and CS that are recursive
« Arecursive solution to a problem is all about describing the
problem in terms of a smaller version of itself!

Thinking recursively!

1. Base case: solve the smallest version(s) of the problem
2. Recursive case: describe the problem in terms of itself!
« Assume you have a solution for a smaller input size!
* Describe the problem in terms of a smaller version of itself.

Example problem: Print all the elements of a linked-list backwards!

NG~

What is the smallest version of this problem?

Step 1. Base case!

[/\Write code for the smallest version of the problem
void printBackwards(Node * head){

Step 2: Write the recursive case !

- Assume you have a solution for a smaller version of the problem!!!!
- Describe the problem in terms of a smaller version of itself

void printBackwards(Node * head){
If (head == NULL) //Base case
return;

Al

Example 2: Find the sum of the elements of a linked-list

head \

C -G o—=CDD

Step 1. Base case!

- Write code for the smallest version of the problem
Int sum(Node * head){

Step 2: Write the recursive case !

- Assume you have a solution for a smaller version of the problem!!!!
- Describe the problem in terms of a smaller version of itself
void sum(Node * head){
If (head == NULL) //Base case

GG

L
Example 3: Backwards with arrays

name \BI \ol \nl \dl \0/ \OI \'7/

void printElementsBackwards(char *arr, int len){

if(len<=0){ //Base case
return;

}

[/\Write your code here

L
C-Strings

Q1: How are ordinary arrays of characters and C-strings similar and
how are they dissimilar?

Which of the following is not a C string?

char mystr[5] = “John”;

char mystr[] = “Mary”;

const char *mystr = “Jill”;

char mystr[4]= {‘'O’, ‘ai’, ‘1’', ‘1'};

o Q w »

Q2: Which of the following statements about the given
code Is FALSE?

char sl1[5] = "Mark", s2[5] = "Jill";
for (int 1 = 0; 1 <= 5; 1++4)

sl[i] = s2[1];
if (sl '= s2) sl = "Art'";

There is an out of bound access in the for loop
The entire for loop can be replaced by s1 = s2;
In the If statement, the logic for comparing two strings is incorrect.

The body of the if statement is incorrect: cannot change the base
address of an array

OO0 @ »

e
C String Standard Functions #include <cstring>

char sl1[5] = "Mark", s2[5] = "Jill";

for (nt 1 = 0; 1 <= 5; 1++)
1[1] = s2[1];

if (sl I= s2) s1 = "Art";

=int strlen(char *string);

= Returns the length not counting of string the null terminator
=int strcmp (char *strl, char *str2);

= return 0 if strl and str2 are identical (how is this different from strl == str2?)
=int strcpy(char *dst, char *src);

= copy the contents of string src to the memory at dst. The caller must ensure that dst
has enough memory to hold the data to be copied.

= char* strcat(char *sl, char *s2);
= concatenate the contents of string s2 to s2and returns pointer to resulting string

Q3: What Is the output of the following code? (solo vote)

char s1[4] = "abc", s2[4] = "EFG";
If (strcmp(sl, s2)) cout << "Hil";

else cout << "Hey!";

A. Hi!

B. Hey!

C. Compiler error
D. Runtime error

C strings vs. String class: What is the output of the code?
string s1 = "Mark";

string s2 = "Jill";
for (inti = 0; i <= sl.length(); i++)
s2[i] = s1]i];

T (sl ==s2) sl ="Art",
cout<<si<<" "<<g2<<end!;

Mark Jill

Mark Mark

Art Mark
Compiler error
Run-time error

moowe»

The C++ string class methods

string fruit = "Apple";

int len = fruit.length();

int pos= fruit.find(‘1l’);
string part= fruit.substr(l,3);

fruit.erase (2, 3);
fruit.insert (2, “ricot”);

fruit.replace (2,5, “ple”);

Check out ctype for checks and conversions on
characters

fruit[0]= tolower (fruit[0]);
i1salpha (fruit[0])

Lab 08: anagrams and palindromes

bool iIsAnagram(string s1, string s2)

Diba == Adib
Rats and Mice == |In cat's dream
Waitress == A stew, Sir?

bool isPalindrome(const string s1) //recursive
nool isPalindrome(const char *s1) //recursive

bool isPalindromelterative(const char *s1) //iterative

deTartraTED
WasItACarOrACatlSaw Why don’t we pass the length of the string?

Next time

- Dynamic memory pitfalls
- Advanced problems in recursion involving strings

