
MORE STRINGS AND

RECURSION

Problem Solving with Computers-I

https://ucsb-cs16-sp17.github.io/

Imposter panel: Tomorrow Thurs (06/01),

12:30pm to 1:50pm, HFH 1132

Come hear faculty, grad

students and undergrad

alumni talk about their

careers and how they

dealt with feeling like an

Imposter!

Come for the Pizza, stay

for the panel!

Please RSVP : https://goo.gl/forms/ttvzHNPWAZ0GCPA92

https://goo.gl/forms/ttvzHNPWAZ0GCPA92

Lab 08: anagrams

Diba == Adib

Rats and Mice == In cat's dream

Waitress == A stew, Sir?

bool isAnagram(string s1, string s2)

Lab 08: Palindromes

bool isPalindrome(const string s1) //recursive

deTartraTED

WasItACarOrACatISaw

bool isPalindrome(const char *s1) //recursive

bool isPalindromeIterative(const char *s1) //iterative

Understanding the arguments of isPalindrome

bool isPalindrome(const char *s1) //recursive

What is the data type of s1?

A. C string

B. String class object

C. A constant pointer

D. All of the above

E. Noe of the above

Lab 08: Understanding the arguments of isPalindrome

bool isPalindrome(const char *s1) //recursive

Why don’t we pass the length of the string as a second parameter?

A. It can be inferred from s1 using the s1.length() method

B. It can be inferred from s1 using the function strlen(s1)

C. It is not required to determine if the string is a palindrome

D. There is an error in the function declaration, we need to specify the length

as a second parameter

Lab 08: Steps in a recursive implementation

deTartraTED

WasItACarOrACatISaw

bool isPalindrome(const char *s1) //recursive

1. What is the base case ?

2. What is the key assumption when writing the recursive step?

3. What is the recursive step?

Dynamic memory allocation

• To allocate memory on the heap use the ‘new’ operator

• To free the memory use delete

int *p= new int;

delete p;

8

int arr[5];

Dynamic arrays

Dangling pointers and memory leaks

• Dangling pointer: Pointer points to a memory location that

no longer exists

• Memory leaks (tardy free)

• Heap memory not deallocated before the end of program (more strict

definition, potential problem)

• Heap memory that can no longer be accessed (definitely a leak ,

must be avoided!)

Dynamic memory pitfall: Memory Leaks

• Memory leaks (tardy free)

Does calling foo() result in a memory leak? A. Yes B. No

void foo(){

int * p = new int;

}

Q: Which of the following functions results in a dangling
pointer?

int * f1(int num){
int *mem1 =new int[num];
return(mem1);

}

A. f1

B. f2

C. Both

int * f2(int num){
int mem2[num];
return(mem2);

}

Deleting the list

head taillist

(A) (B)

(C) All nodes of the linked list

(D) B and C

(E) All of the above

int freeLinkedList(LinkedList * list){…}

Which data objects are deleted by the statement: delete list;

Does this result in a memory leak?

Delete node 2 in the list
head taillist

Delete the list
int freeLinkedList(LinkedList * list);

head taillist

Next time

• Advanced problems in recursion on linked-lists

